Brand new work published in Developmental Cell by Stephen Weiss and our founder Michael Yu! They evaluated protease-dependent invasion of breast cancer cells by examining how ECM remodeling and branching morphogenesis are influenced by specific matrix metalloproteinases (MMPs). They utilized CHPs to analyze the collagen proteolysis in remodeling events along developing mammary epithelial ducts.

Abstract: Metastasizing breast carcinoma cells have been hypothesized to mobilize tissue-invasive activity by co-opting the proteolytic systems employed by normal mammary epithelial cells undergoing branching morphogenesis. However, the critical effectors underlying morphogenesis remain unidentified, and their relationship to breast cancer invasion programs is yet to be established. Here, we identify the membrane-anchored matrix metalloproteinaseMmp14/MT1-MMP, but not the closely related proteinase Mmp15/MT2-MMP, as the dominant proteolytic effector of both branching morphogenesis and carcinoma cell invasion in vivo. Unexpectedly, however, epithelial cell-specific targeting of Mmp14/MT1-MMP in the normal mammary gland fails to impair branching, whereas deleting the proteinase in carcinoma cells abrogates invasion, preserves matrix architecture, and completely blocks metastasis. By contrast, in the normal mammary gland, extracellular matrix remodeling and morphogenesis are ablated only when Mmp14/MT1-MMP expression is specifically deleted from the periductal stroma. Together, these findings uncover the overlapping but divergent strategies that underlie developmental versus neoplastic matrix remodeling programs.

Check out the full article FULL ARTICLE HERE

Leave a Reply

Please wait...

Subscribe to our newsletter

Want to be notified when our article is published? Enter your email address and name below to be the first to know!